





## Description

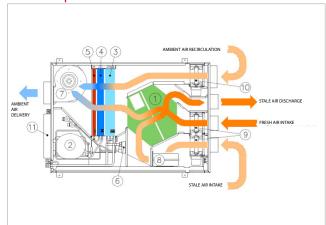
The KDV machines are integrated units for ceiling installation to be used in combination with radiant systems for air treatment, with ventilation duct option, dehumidification and sensitive power integration.

When connected to a radiant panel system, the KDVRWY300 unit is able to carry out air treatment operations according to the different needs relating to the seasons and to environmental wellbeing, through the following functions:

- air renewal, both in summer and winter, with heat recovery of 90%;
- air renewal without heat recovery (with external accessory);
- dehumidification in summer with temperature control of the air delivered into the environment;
- summer cooling without dehumidification through the radiant plant water;
- heating of the air in winter through the hot water in the radiant system.

The machine is made from a zinc-plated sheet structure that collects: a direct expansion refrigeration circuit and an alternative refrigeration compressor, a coil with fins fed from the hydraulic circuit of the radiant system, a high-efficiency air/air heat recovery, two dampers (one optional) to regulate the aeraulic flows and two electronically controlled EC fans.

Thanks to the particular fans used, the machine's electronic controller allows the user to set the air flow rate in the various functions: the unit will achieve these flow rates regardless of the pressure drop of the air ducts, provided these do not exceed the maximum pressure available.


# Versions and product codes

| Product code | Dehumidifica-<br>tion | Cooling integration | Ventilation | Ref. technical communication |
|--------------|-----------------------|---------------------|-------------|------------------------------|
| KDVRWY300    | YES                   | YES                 | YES         | 0573EN                       |
| KDVRAY300    | YES                   | YES                 | YES         | 0574EN                       |

# Technical data

| TECHNICAL DATA                                                                                                  |                                                                                                       |  |  |  |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|--|--|
| Water                                                                                                           | condensation                                                                                          |  |  |  |
| Electricity supply                                                                                              | 230 V 50 hz                                                                                           |  |  |  |
| Weight                                                                                                          | 71 Kg                                                                                                 |  |  |  |
| Total dehumidification flow rate                                                                                | 44,9 l/24 h<br>1083 W                                                                                 |  |  |  |
| Effective dehumidification flow rate (relative to recirculation)                                                | 25,9 I/24 h<br>625 W                                                                                  |  |  |  |
| Effective refrigeration flow rate (relative to recirculation)                                                   | 1050 W                                                                                                |  |  |  |
| Electric power absorbed by compressor                                                                           | 460 W                                                                                                 |  |  |  |
| Required water flow rate                                                                                        | 400 l/h                                                                                               |  |  |  |
| Water circuit pressure drop                                                                                     | 8 kPa                                                                                                 |  |  |  |
| Power absorbed by delivery fan                                                                                  | min 30 W<br>max 70 W                                                                                  |  |  |  |
| Delivery fan flow rate                                                                                          | min 200 m³/h<br>max 300 m³/h                                                                          |  |  |  |
| Delivery fan effective pressure                                                                                 | 200 Pa                                                                                                |  |  |  |
| Power absorbed by discharge fan                                                                                 | min 15 W<br>max 30 W                                                                                  |  |  |  |
| Discharge fan flow rate                                                                                         | min 200 m³/h<br>max 300 m³/h                                                                          |  |  |  |
| Discharge fan effective pressure                                                                                | 100 Pa                                                                                                |  |  |  |
| Energy recovery when set to winter function (20 $^{\circ}$ C - 50% RH inside, -5 $^{\circ}$ C - 50% RH outside) | Flow rate 80 m <sup>3</sup> /h - efficiency 95 %<br>Flow rate 160 m <sup>3</sup> /h - efficiency 91 % |  |  |  |
| Energy recovery when set to summer function (26 °C - 65% RH inside, 35 °C - 50% RH outside)                     | Flow rate 80 m <sup>3</sup> /h - efficiency 93 %<br>Flow rate 160 m <sup>3</sup> /h - efficiency 86 % |  |  |  |
| Sound pressure level (in free field conditions, 1 m distance)                                                   | 39 dB(A)                                                                                              |  |  |  |

# Main components



| Legend |                              |    |                                                  |  |
|--------|------------------------------|----|--------------------------------------------------|--|
| 1      | Air/air heat recovery        | 6  | Freon/water plate condenser                      |  |
| 2      | Refrigeration compressor     | 7  | Environment air flow delivery fan                |  |
| 3      | Water-powered coil with fins | 8  | Discharge fan                                    |  |
| 4      | Refrigerator evaporator      | 9  | Discharge damper and stale air intake (optional) |  |
| 5      | Freon/air condenser          | 10 | Ambient air recirculation damper                 |  |

Figure 1 -Components

1





#### **Aeraulic function**

The air flow rate treated by the machine can be set through the control panel, the fans automatically revert to the speed required to overcome the losses of pressure in the ducts.

Two air flows are possible within the machine: air renewal without heat recovery, via the counter-current flow air/air recuperator (1), and the ambient air recirculation.

Renewal and recirculation flows can be combined or not, depending on the flow rate and the type of treatment to be performed on the air entering the system. The following air treatment operations can be performed:

- air renewal with optional winter heating or summer cooling;
- recirculation of air with winter heating, summer cooling, summer dehumidification, and summer cooling and dehumidification combined;
- recirculation of air with partial renewal, along with all treatments provided for in the recirculation setting.

The flow rates of air can take on the following values:

- air introduced into the environment, with variable recirculation rate: flow rate can be set from 200 m³/h up to 300 m³/h;
- Fresh air: flow rate can be set from 80 to 160 m<sup>3</sup>/h.

# Thermo-hygrometric function

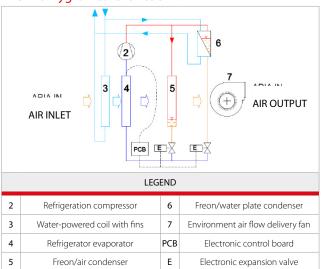



Figure 2 - Thermo hygrometric function

**COOLING:** The coil with fins (3), connected to the hydraulic radiant system, allows for cooling in the summer and heating in the winter; the output temperature can be adjusted by the machine itself, with the addition of an external mixing valve (supplied as an accessory) or with the mixing valve and adjustment of the radiant system.

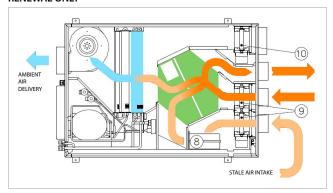
**DEHUMIDIFICATION AND COOLING:** the air is pre-cooled by the water coil (3) which is powered by the radiant system; the refrigerator evaporator (4) carries out the cooling and consequent dehumidification of the air.

The refrigerator circuit of two condensers connected in parallel: in addition to the air-cooled condenser (5) a second plate condenser (6) disposes of the condensation heat in the water.

The two electronic expansion valves allow the distribution of the condensation heat between air and water, in the desired proportions; in this way, the air exiting the system can be adjusted to the desired temperature between the coldest and neutral.

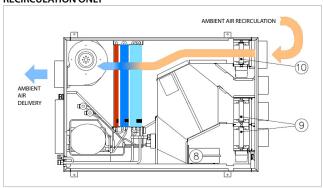
The output air temperature values that can be set are:

- neutral summer temperature;
- summer integration temperature;
- neutral winter temperature;
- winter integration temperature;


# I t

#### Note.

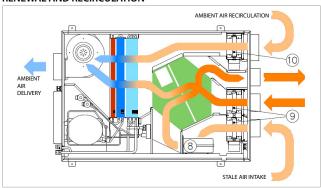
The refrigerator circuit cannot be launched in the winter or when set to pure renewal.


# Summer function setting

## **RENEWAL ONLY**



- Damper 9 is open (if present), damper 10 is closed;
- air flow rate can be set from 80 to 160 m<sup>3</sup>/h;
- the delivery air temperature can be corrected through the water coil.


## RECIRCULATION ONLY



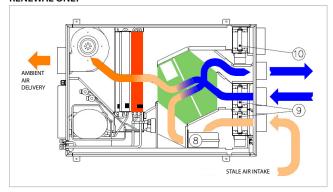
- Damper 9 is closed (if present), damper 10 is open;
- air flow rate can be set from 200 to 300 m<sup>3</sup>/h;
- the delivery air temperature can be corrected through the water coil, and if the dehumidification or (cold) integration functions are activated, the refrigerator circuit.

In this last case, maximum air cooling can be achieved.

#### RENEWAL AND RECIRCULATION

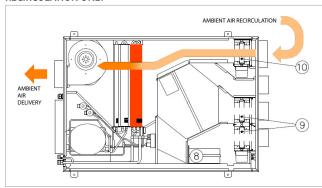


- Damper 9 is open (if present); a dedicated differential pressure sensor guides the partial opening of damper 10 in order to ensure correct distribution of the flow rate;
- renewed air flow rate can be set from 80 to 160 m³/h;
- delivery air flow rate can be set from 200 to 300 m<sup>3</sup>/h;
- the delivery air temperature can be corrected through the water coil, and if the dehumidification or (cold) integration functions are activated, the refrigerator circuit.


In this last case, maximum air cooling can be achieved.

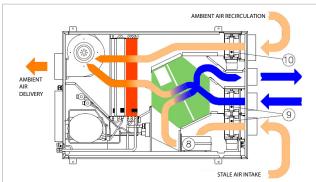





## Winter function setting

## **RENEWAL ONLY**




- Damper 9 is open (if present), damper 10 is closed;
- air flow rate can be set from 80 to 160 m<sup>3</sup>/h;
- the delivery air temperature can be corrected through the water coil.

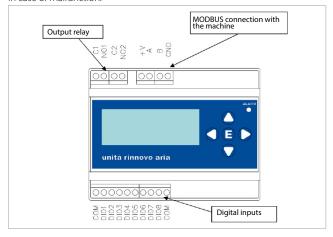
## RECIRCULATION ONLY



- Damper 9 is closed (if present), damper 10 is open;
- air flow rate can be set from 200 to 300 m<sup>3</sup>/h;
- the delivery air temperature can be corrected through the water coil.

# RENEWAL AND RECIRCULATION




- Damper 9 is open (if present); a dedicated differential pressure sensor guides the partial opening of damper 10 in order to ensure correct distribution of the flow rate;
- renewed air flow rate can be set from 80 to 160 m³/h;
- delivery air flow rate can be set from 200 to 300 m<sup>3</sup>/h;
- the delivery air temperature can be corrected through the water coil.

## Control panel

The machine is equipped with a remote control panel to be mounted on a DIN rail in a wall-mounted electrical cabinet.

The control panel is equipped with 3 terminal boards, with the following connections:

- the connection to the machine, through the four wires that supply power to the panel (24 V) and the serial communication with the electronics board;
- the digital activators for the various functions;
- the two digital relay outputs which activate a circulation pump and an alarm in case of malfunction.



#### **MODBUS** connection

The connection is carried out with 4 wires; at the ends of A and B, insert the terminating resistor supplied. The V+ wire supplies 24 V of power to the panel. IF the connection is longer than 25 metres, use a shielded cable.

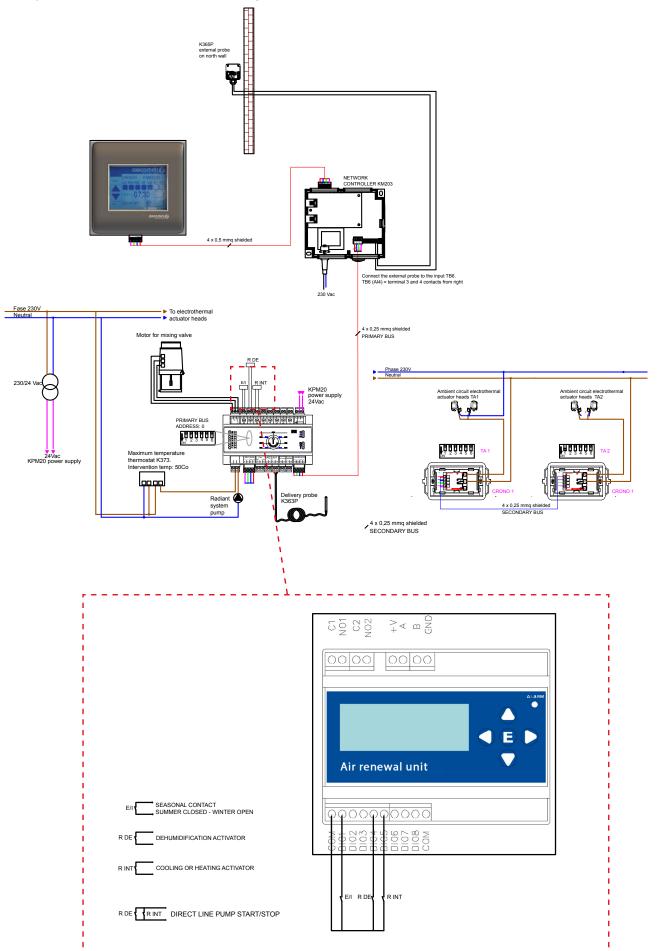
## **Output relay**

- C01-NO1: 250 V AC 5 A relay activated when water circulation is required, useful for controlling a pump.
- C01-NO2: 250 V AC 5 A relay activated in the presence of an alarm, useful for providing a remote alarm signal.

#### **Digital inputs**

- COM: Common terminal for all inputs;
- DI01: season indicator, 1 = summer, 0 = winter, if the season is set from digital input instead of from the keyboard;
- DI02: environment fan activator; this is not a function mode, but keeps the air moving in a given environment;
- DI03: renewal activator;
- DI04: dehumidification activator;
- DIO5: cooling activator if the season is set to SUMMER, or heating if the season is WINTER:
- DI06: renewal blocker, allows users to block a renewal set with DI03 or with hour bands. This input, if connected in conjunction with the DI03 to a 3-position selector of 0-1-2 type, allows users to activate a function with three possibilities: renewal ON, renewal OFF, AUTOMATIC renewal; through time bands
- DI07: not available
- DI08: flow rate attenuation activator.

## **AVAILABLE SETTINGS ON THE KEYBOARD**


- activation of functions (alternative to digital activators);
- clock, season (alternative to digital activators);
- air delivery and renewal flow rate;
- normal delivery temperature and integration temperature for each season;
- automatic renewal hour bands (maximum 4);
- flow rate attenuation hour bands (maximum 4).

Furthermore, the machine is equipped with temperature sensor values which can be read here, useful when testing or verifying proper function.





# Example of connection with Giacomini bus system







## Connections

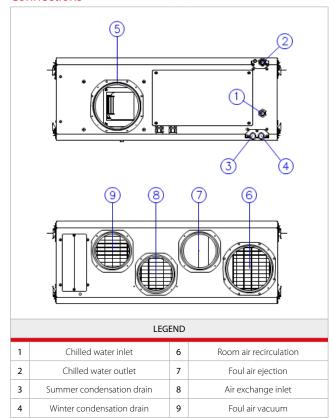



Fig. 3 - Connections

5

Electric connection: 3x1,5 mm<sup>2</sup>

Room air delivery

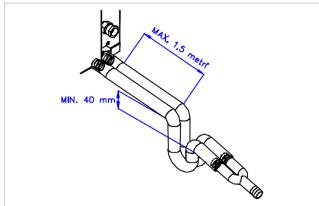
Control panel connection  $4x0,5 \text{ mm}^2$ , shielded if L > 25 m

Hydraulic connections: 1/2" F

Aeraulic connections: delivery and recirculation  $\varnothing$  160

renewal, discharge and recovery Ø 125




#### Note

The condensation drain must have 2 independent siphons with a minimum height of 50 mm, which can only be assembled downstream

#### Siphons for the discharge of the condense

The drains of the condensates are two, one for the summer condensatation and one for winter condensation.

They are indispensable to prevent suck back of air can prevent proper drainage of the condensate possibly formed; they must be independent, with a difference of a minimum height of 40 mm and installed near the exhaust ducts of the machine.



## **Dimensions**

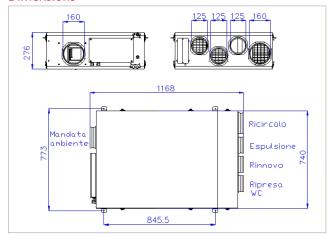



Figure 4 - Dimensions in mm

# **Product specifications**

## KDVRWY300

Integrated air treatment unit with ventilation duct option, dehumidification and sensitive power integration for false ceiling installation, to be used alongside radiant cooling systems complete with high-efficiency heat recovery air counter-current (efficiency> 86%), removable filter section in class G3 synthetic material (EN779:2002), 2 "brushless" centrifugal fans with direct coupled 3-speed motor, 5 motorized dampers, refrigeration circuit with R134a refrigerant gas, hydraulic circuit, treatment batteries with copper pipe and aluminium fins and 5 delivery units, recirculation, extraction, external socket, 125 mm diameter discharge. Total flow rate 260÷300 m³/h. External air flow rate 80÷160 m³/h. Dehumidification flow rate 25,9 l/24 h (depending on internal environment). Ambient temperature working range 15÷32 °C. Precalibration pressure 40 Pa. Water connections 4x1/2" F. 230 V power supply.

VENTILATION, DEHUMIDIFICATION, SENSITIVE POWER INTEGRATION UNITS FOR RADIANT SYSTEMS KDV







## Description

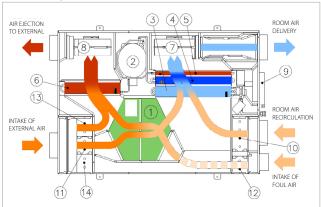
**KDV** are monoblock units for ceiling installation and use with air treatment radiant systems. These are duct-type devices for ventilation, dehumidification and sensitive power integration.

A **KDVRAY360** unit connected to a radiant panel system can perform air treatment based on season and room comfort needs, thanks to the functions listed below:

- air exchange, both in winter and summer, with heat recovery up to 90%
- air exchange with no heat recovery (with external accessory)
- summer dehumidification with control of delivery air temperature
- dehumidification-free summer cooling through radiant system water
- winter air heating through radiant system hot water

The machine is made from a zinc-plated sheet structure that collects: a direct expansion refrigeration circuit and an alternative refrigeration compressor, a coil with fins fed from the hydraulic circuit of the radiant system, a high-efficiency air/air heat recovery, two dampers (one optional) to regulate the aeraulic flows and two electronically controlled EC fans.

Thanks to the particular fans used, the machine's electronic controller allows the user to set the air flow rate in the various functions: the unit will achieve these flow rates regardless of the pressure drop of the air ducts, provided these do not exceed the maximum pressure available.


# Versions and product code

| Product code | Dehumidifica-<br>tion | Cooling integration | Ventilation | Technical com-<br>munication ref. |
|--------------|-----------------------|---------------------|-------------|-----------------------------------|
| KDVRAY360    | YES                   | YES                 | YES         | 0935IT                            |
| KDVRAY500    | YES                   | YES                 | YES         | 0942EN                            |

# Technical data

| TECHNICAL DATA                                                                            |                                                                                                       |  |  |  |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|--|--|
| Electric power                                                                            | 230 V 50 hz                                                                                           |  |  |  |
| Weight                                                                                    | 85 kg                                                                                                 |  |  |  |
| Total dehumidification capacity (room 35 °C, 50 % R.H.)                                   | 56 l/24h<br>1620 W                                                                                    |  |  |  |
| Useful dehumidification capacity (referred to recirculation, room 26 °C, 50 % R.H.)       | 25 l/24h<br>723 W                                                                                     |  |  |  |
| Useful refrigerating capacity (referred to recirculation, room 26 °C, 50 % R.H.)          | 1460 W                                                                                                |  |  |  |
| Nominal electric power absorbed                                                           | 820 W                                                                                                 |  |  |  |
| Electric power absorbed by compressor                                                     | 470 W                                                                                                 |  |  |  |
| Required water flow rate                                                                  | 360 l/h                                                                                               |  |  |  |
| Water circuit pressure drop                                                               | 12 kPa                                                                                                |  |  |  |
| Power absorbed by delivery fan                                                            | min 40 W; max 170 W                                                                                   |  |  |  |
| Delivery fan flow rate                                                                    | min 90 m³/h; max 360 m³/h                                                                             |  |  |  |
| Delivery fan useful head                                                                  | 200 Pa                                                                                                |  |  |  |
| Power absorbed by ejection fan                                                            | min 40 W; max 170 W                                                                                   |  |  |  |
| Ejection fan flow rate                                                                    | min 90 m³/h; max 360 m³/h                                                                             |  |  |  |
| Ejection fan useful head                                                                  | 200 Pa                                                                                                |  |  |  |
| Energy recovery for winter operation (20 °C - 50 % internal RH, -5 °C - 50 % external RH) | Flow rate 90 m <sup>3</sup> /h - efficiency 91 %<br>Flow rate 220 m <sup>3</sup> /h - efficiency 87 % |  |  |  |
| Energy recovery for summer operation (26 °C - 65 % internal RH, -5 °C - 80 % external RH) | Flow rate 90 m <sup>3</sup> /h - efficiency 89 %<br>Flow rate 220 m <sup>3</sup> /h - efficiency 82 % |  |  |  |
| Acoustic pressure level (in free field, distance 1 m)                                     | 42 dB(A)                                                                                              |  |  |  |

# Main components



| LEGEND |                                |    |                               |  |
|--------|--------------------------------|----|-------------------------------|--|
| 1      | Air/air heat recuperator       | 8  | Ejection fan                  |  |
| 2      | Refrigerating compressor       | 9  | Electric panel                |  |
| 3      | Water-powered finned coil      | 10 | Room air recirculation damper |  |
| 4      | Refrigerating evaporator       | 11 | Exchange air intake damper    |  |
| 5      | Freon/air condenser            | 12 | Foul air intake damper        |  |
| 6      | Freon/water disposal condenser | 13 | Auxiliary air intake damper   |  |
| 7      | Room delivery fan              | 14 | Recuperator by-pass damper    |  |

Figure 1 - Components

1

**0935EN** May 2022

VENTILATION, DEHUMIDIFICATION, SENSITIVE POWER INTEGRATION UNITS FOR RADIANT SYSTEMS





## Aeraulic operation

The flow rates of air treated by the unit can be set through the control panel. The fans set automatically on the speed required to overcome the pressure drops in the ducts.

The unit can feature two air flows: an exchange flow with heat recovery through the air/air counterflow recuperator (1) and one for room air recirculation.

The exchange and recirculation flows can be/not be combined based on the flow rates and type of treatment desired for the air entering the system.

It also includes a duct controlled by a motorized damper which enables to intake external air without passing through the recuperator.

This allows to exploit, if available, free cooling from the external air.

The by-pass turns ON automatically when there is a proper input signal and the external temperature is within the limits set.

The following types of air treatment can be performed:

- air exchange with high-efficiency heat recovery and possible winter heating or summer cooling
- free-cooling air exchange, that is with no heat recovery, both in summer and winter
- winter air recirculation, with possible heating
- summer air recirculation, with cooling, dehumidification or cooling and dehumidification
- air recirculation with exchange air, together with all treatments provided for recirculation

The air flow rates may feature the values below:

- air introduced in room, flow rate setting 220 m<sup>3</sup>/h 360 m<sup>3</sup>/h
- air exchange, flow rate setting 90 220 m<sup>3</sup>/h
- free-cooling, exchange flow rate setting 90 220 m<sup>3</sup>/h

# Refrigerating circuit operation

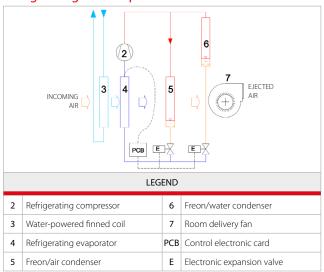



Figure 2 - Thermal hygrometric operation

#### Cooling

The finned coil (3), connected to the radiant hydraulic system, provides summer cooling or winter heating.

The output temperature control is performed by the unit itself through the mixing valve installed in the water circuit.

#### Dehumidification and cooling

The finned coil (3) supplied by the radiant system water pre-cools air, while the refrigerating evaporator (4) carries out subsequent cooling and consequent dehumidification of the air.

The refrigerating circuit includes two parallel-connected condensers: in addition to the air-cooling condenser (5), a second condenser cooled by the ejected air flow (6) disposes of the condensation heat in the external environment. When performing this operation, the unit exploits both the ejected foul air and an additional integration flow of external air.

The two electronic expansion valves (E) enable to distribute the condensation heat in the desired ratio between introduced air and ejected air; in this way, one can obtain the desired temperature for the ejected air between maximum cold and neutral.

The setting values for the ejected air temperature are:

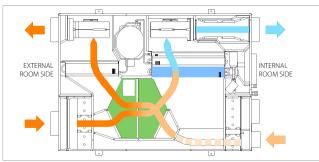
- summer neutral temperature
- summer integration temperature
- winter neutral temperature
- winter integration temperature



#### Note

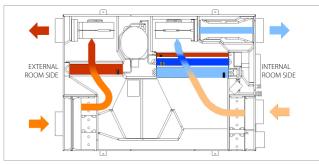
The refrigerating circuit cannot be turned on in winter nor in the exchange-only function.

**0935EN** May 2022


VENTILATION, DEHUMIDIFICATION, SENSITIVE POWER INTEGRATION UNITS FOR RADIANT SYSTEMS

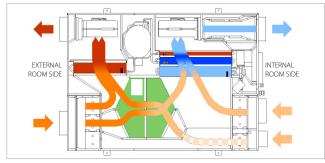





## **Summer operation**

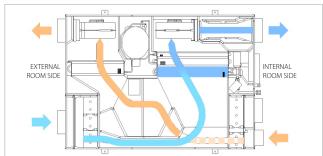
## **EXCHANGE ONLY**




Both fans are ON and provide air exchange: the external air is cooled first by the recuperator through the ejected air, and then by the refrigerated water of the finned coil.

#### **DEHUMIDIFICATION ONLY**

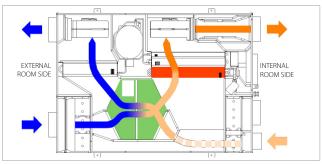



The compressor and delivery fan are ON; the room air is dehumidified and transferred at the temperature setting. Should it be necessary to dispose of the heat in excess, the ejection fan intakes and ejects an external air flow, heated by the disposal coil.

# EXCHANGE + DEHUMIDIFICATION / EXCHANGE + COOLING

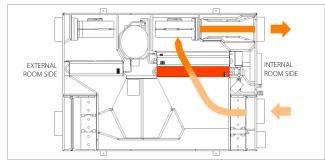


The compressor and both fans are ON. The introduced air is treated by the entire coil pack. The introduced air flow rate can be set between 220 - 360 m $^3$ /h, while the exchange air can be set between 90 - 220 m $^3$ /h.


# **HEAT RECUPERATOR BY-PASS**



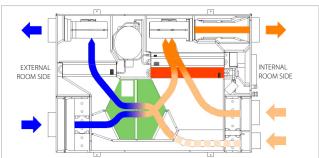
Both fans are ON, the damper of the introduced external air is closed while the bypass damper is open. The introduced air is treated by the refrigerated-water coil. The air flow rate can be set between 90 - 220 m<sup>3</sup>/h.


## Winter operation

## **EXCHANGE ONLY**

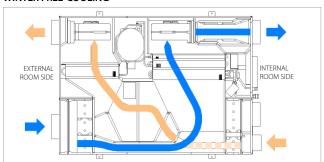


Both fans are ON and provide exchange; the external air is heated first by the recuperator through the ejected air, and then by the hot water circulating inside the finned coil.


#### RECIRCULATION ONLY



The delivery fan is ON; the room air is sucked and reintroduced at the temperature setting. The ejected air temperature can be set by modulating the hot water flow rate in the finned coil.


The flow rate of the introduced air can be set between 90 -  $360 \text{ m}^3/\text{h}$ 

# **EXCHANGE + RECIRCULATION**



The fans are both ON. The introduced air is heated by the water-powered coil. The exchange air is pre-heated through the recuperator by the ejected air. The introduced air flow rate can be set between 90 - 360 m<sup>3</sup>/h, while the exchange air can be set between 90 - 220 m<sup>3</sup>/h.

# WINTER FREE-COOLING

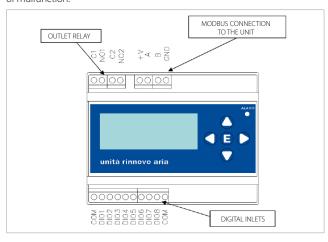


The fans are both ON, the damper of the introduced external air is closed while the by-pass damper is open. The water circuit of the finned coil is closed. The air flow rate can be set between 90 - 220 m<sup>3</sup>/h.

**0935EN** May 2022

VENTILATION, DEHUMIDIFICATION, SENSITIVE POWER INTEGRATION UNITS FOR RADIANT SYSTEMS KDV






## Control panel

The machine features a remote control panel for installation on DIN template (space occupied by 6 modules) in a wall-mounting electric panel.

The control panel has 3 terminal strips for:

- connection to the unit through four cables that provide electric power to the panel (24  $\rm V$ ) and serial communication with the electronic card
- digital input signal for the various functions to be activated
- two digital relay outlets to activate a circulation pump and an alarm in case of mulfunction.



#### **MODBUS** connection

Connection with 4 cables, 2 for 24Vdc power to panel and 2 for serial communication.

Use a screened cable with a 0.5 mm <sup>2</sup> for connection.

#### **Outlet relays**

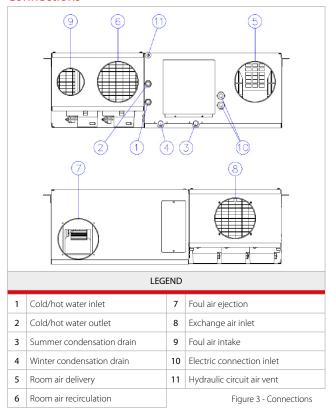
- C01-NO1: 250V AC 5A relay which activates when water circulation is required, useful to control a pump
- C01-NO2: 250V AC 5A relay activated by alarm, useful to provide a remote alarm signal

#### **Digital inlets**

- COM: terminal shared by all inlets
- DI01: season signal, 1 = summer, 0 = winter, if season is set from a digital inlet instead of keypad
- DI02: input signal for room fan activation, this is not an operation mode but enables to keep the room air moving
- DI03: exchange input signal
- DI04: dehumidification input signal
- DI05: cooling input signal in SUMMER or heating input signal in WINTER
- DI06: exchange blocking, enables to block an exchange set with DI03 or with time schedules. This inlet, combined to DI03 and connected to a 3-position selector type 0-1-2, enables operation with three options: exchange ON, exchange OFF, AUTOMATIC exchange with time schedules
- DI07: not available
- DIO8: input signal for flow rate attenuation; this contact enables to reduce the air flow rates without changing the functions active in a specific moment, based on the technical settings. This control is useful when the user wants to turn the unit ON privileging aerial noise reduction versus air conditioning performance, for example during the night

#### Air treatment functions

- **Exchange:** air exchange with flow rate provided for exchange, using heat recuperator
- Cooling: it appears when the selected season is summer; the refrigerating compressor is turned ON for dehumidification and the delivery temperature will be the setting value for cooling integration. Cooling can also be performed with refrigerated water only and compressor OFF
- **Heating:** it appears in place of cooling when the selected season is winter; the delivery temperature will be the value for operation with heating integration, achieved through the water-powered coil. The ejected air temperature is controlled by a valve modulating the water flow inside the coil
- **Dehumidification:** the refrigerating compressor is turned ON for dehumidification and the delivery temperature will be the value for operation with neutral air
- Free-cooling: it activates air exchange with the flow rate provided for free-cooling, without using the heat recuperator. In addition to the digital input signal, free-cooling requires an external temperature within the technical setting limits
- Attenuation: the unit works with the flow rates set for attenuation, which are set by default at lower values compared to normal operation to limit aeraulic noise. This function is useful when the user wants the machine to work during the night

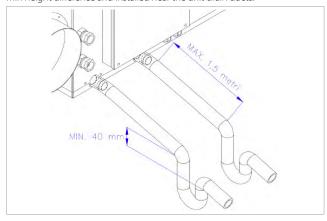

**0935EN** May 2022

VENTILATION, DEHUMIDIFICATION, SENSITIVE POWER INTEGRATION UNITS FOR RADIANT SYSTEMS KDV





## Connections




#### Connection of water circuit pipes

Shut-off valves must be installed in the refrigerated water pipes to divide the unit system in sections. After connection to the system, check the water seal of both the connections and unit to prevent damages to the room below.

## **Condensation drain siphons**

There are two condensation drains, one for summer condensation and one for winter. They must ensure a 15 I/h flow rate and feature a 3% min gradient. Siphons are essential to prevent the air suction from affecting proper drainage of the condensation that may form; they must be independent, with a 40 mm min height difference and installed near the unit drain ducts.



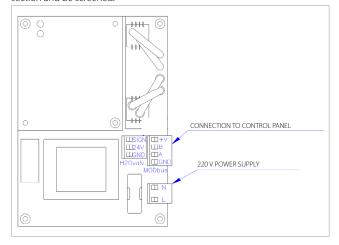
# Aeraulic connections

The unit includes plastic nozzles with gaskets, extending for about 4 cm, for installation of flexible or rigid ducts, as long as equipped with gaskets to prevent air leaks and consequent undesired noise.

The nozzle diameters are:

- delivery and recirculation: Ø 160
- exchange and ejection: Ø 160
- WC/kitchen foul air intake: Ø 125

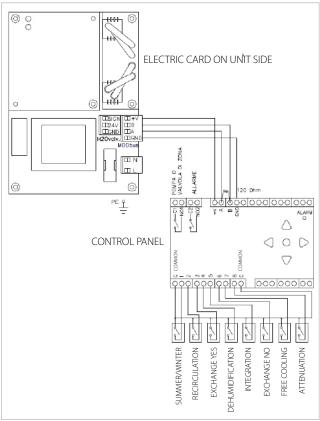
The actual diameter of the connections is about 1 mm smaller than the nominal diameter.


## Electric connections

## **Conductor section**

The electric power line and the sectioning devices must be determined by operators qualified for electric network planning; the cable must however feature a 3x1.5 mm<sup>2</sup> min section, F + N+ PE.

The figure below shows the terminals available for the connections:


- electric power must be supplied on the unit edge
- 4-cable connection to control panel; it provides both the panel 24Vdc power and serial communication. This connection cable must have a 0.5  $\,\mathrm{mm^2}$  min section and be screened.



#### Connection to control panel

If the serial communication line between the control panel and the KDVRAY360 unit is longer than 25 m, a 120 Ohm, ¼ W, terminal resistance must be installed between the control panel A and B terminals.

The resistance is fixed with tape on the back of the control panel, in the DIN template notch.



**0935EN** May 2022

 ${f V}$ ENTILATION, DEHUMIDIFICATION, SENSITIVE POWER INTEGRATION UNITS FOR RADIANT SYSTEMS





## **Dimensions**

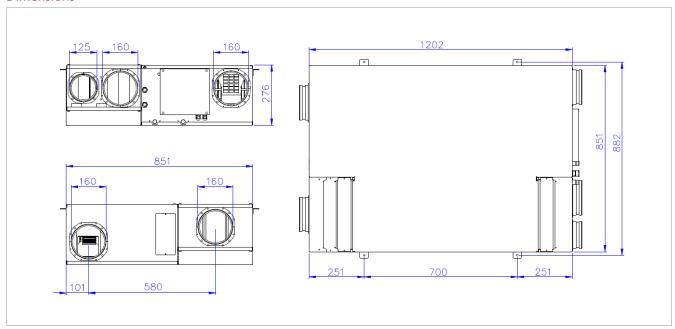
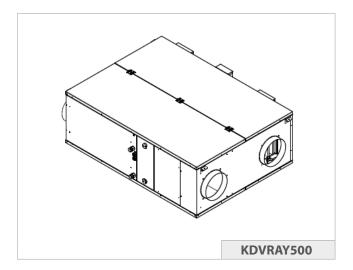



Fig. 4 - Dimensions in mm

## **Product specifications**


#### KDVRAY360

Duct-type monoblock air treatment unit for ventilation, dehumidification and sensitive power integration for ceiling installation; to be combined with cooling radiant systems, complete of high-efficiency counterflow heat recuperator, removable filtering section in synthetic material class G3 (EN779:2002), 2 "brushless" centrifugal fans with motor coupled directly, n. 5 motorized dampers, refrigerating circuit with R134a refrigerating gas, hydraulic circuit, treatment coils with copper pipe and aluminum fins, 5 delivery outputs, recirculation, external outlet, Ø160 mm ejection and Ø 125 mm extraction. Total flow rate 220÷360 m³/h. External air flow rate  $90 \div 220 \text{ m}^3\text{/h}$ . Dehumidification capacity 25 l/24h (referred to internal rooms). Water connections 2x1/2"F. Power 230 V.

VENTILATION, DEHUMIDIFICATION, SENSITIVE POWER INTEGRATION UNITS FOR RADIANT SYSTEMS







# Description

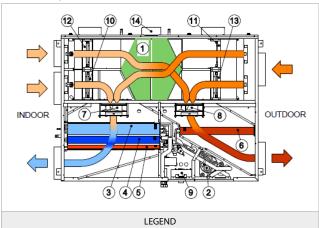
**KDV** are monoblock units for ceiling installation and use with air treatment radiant systems. These are duct-type devices for ventilation, dehumidification and sensitive power integration.

A KDVRAY500 unit connected to a radiant panel system can perform air treatment based on season and room comfort needs, thanks to the functions listed below:

- air exchange, both in winter and summer, with heat recovery
- air exchange with no heat recovery (free-cooling)
- summer dehumidification with control of delivery air temperature
- dehumidification-free summer cooling through radiant system water
- winter air heating through radiant system hot water

The machine is made from a zinc-plated sheet structure that collects: a direct expansion refrigeration circuit and an alternative refrigeration compressor, a coil with fins fed from the hydraulic circuit of the radiant system, a high-efficiency air/air heat recovery, two dampers (one optional) to regulate the aeraulic flows and two electronically controlled EC fans.

Thanks to the particular fans used, the machine's electronic controller allows the user to set the air flow rate in the various functions: the unit will achieve these flow rates regardless of the pressure drop of the air ducts, provided these do not exceed the maximum pressure available.


# Versions and product codes

| Product code | Dehumidifica-<br>tion | Cooling integration | Ventilation | Technical communication ref. |
|--------------|-----------------------|---------------------|-------------|------------------------------|
| KDVRAY360    | YES                   | YES                 | YES         | 0935EN                       |
| KDVRAY500    | YES                   | YES                 | YES         | 0942EN                       |

# Technical data

| TECHNICAL DATA                                                                                                        |                                                                                                            |  |  |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|
| Power supply                                                                                                          | 230 V 1 Ph 50 Hz                                                                                           |  |  |
| Weight                                                                                                                | 105 kg                                                                                                     |  |  |
| Total condensation capacity (external air 35 °C, 50 % R.H.)                                                           | 74,1 l/24h<br>2090 W                                                                                       |  |  |
| Condensation capacity on recirculation (external air 26 °C, 55 % R.H.)                                                | 31,2 l/24h<br>880 W                                                                                        |  |  |
| Cooling capacity on recirculation (external air 26 °C, 55 % R.H.)                                                     | 2580 W                                                                                                     |  |  |
| Rated electrical compressor power                                                                                     | 780 W                                                                                                      |  |  |
| Water flow rate                                                                                                       | 500 l/h                                                                                                    |  |  |
| Pre-cooling water pressure drop                                                                                       | 11 kPa                                                                                                     |  |  |
| Max. cooling capacity for water circuit<br>(external air 35 °C, 50 % U.R., max. flow rate<br>for delivery and intake) | 2050 W                                                                                                     |  |  |
| Power consumption of the delivery fan                                                                                 | min 20 W; max 160 W                                                                                        |  |  |
| Inlet fan air flow rate                                                                                               | min 160 m³/h; max 500 m³/h                                                                                 |  |  |
| Available pressure, inlet fan                                                                                         | 260 Pa                                                                                                     |  |  |
| Power consumption of the discharge fan                                                                                | min 20 W; max 160 W                                                                                        |  |  |
| Discharge fan air flow rate                                                                                           | min 160 m³/h; max 500 m³/h                                                                                 |  |  |
| Available pressure, discharge fan                                                                                     | 260 Pa                                                                                                     |  |  |
| Energy recover, winter (20 °C, 50 % RH internal / -5 °C, 80 % RH external)                                            | Flow rate 160 m³/h - efficiency 91,7 %<br>Flow rate 300 m³/h - efficiency 87,5 %                           |  |  |
| Energy recover, summer (26 °C, 65 % RH internal / 35 °C, 50 % RH external)                                            | Flow rate 160 m <sup>3</sup> /h - efficiency 86,7 %<br>Flow rate 300 m <sup>3</sup> /h - efficiency 80,4 % |  |  |
| Acoustic rating at 1,5 m open field                                                                                   | 48 dB(A)                                                                                                   |  |  |

# Main components



|   | LEGEND                                     |    |                                  |  |  |
|---|--------------------------------------------|----|----------------------------------|--|--|
| 1 | Heat recovery exchanger                    | 8  | Discharge fan                    |  |  |
| 2 | Compressor                                 | 9  | In key                           |  |  |
| 3 | Water coil                                 | 10 | Ambient air recurculation damper |  |  |
| 4 | Evaporator coil                            | 11 | Fresh air intake damper          |  |  |
| 5 | Condensing coil                            | 12 | Stale air intake damper          |  |  |
| 6 | Condensing coil for external heat transfer | 13 | Supplementary air intake damper  |  |  |
| 7 | Inflow fan                                 | 14 | Recuperator by-pass damper       |  |  |

Figure 1 - Components

1

VENTILATION, DEHUMIDIFICATION, SENSITIVE POWER INTEGRATION UNITS FOR RADIANT SYSTEMS

KDV





## Aeraulic operation

The flow rates of air treated by the unit can be set through the control panel. The fans set automatically on the speed required to overcome the pressure drops in the ducts.

The unit can feature two air flows: an exchange flow with heat recovery through the air/air counterflow recuperator (1) and one for room air recirculation.

The exchange and recirculation flows can be/not be combined based on the flow rates and type of treatment desired for the air entering the system.

It also includes a duct controlled by a motorized damper which enables to intake external air without passing through the recuperator.

This allows to exploit, if available, free cooling from the external air.

The by-pass turns ON automatically when there is a proper input signal and the external temperature is within the limits set.

The following types of air treatment can be performed:

- air exchange with high-efficiency heat recovery and possible winter heating or summer cooling
- free-cooling air exchange, that is with no heat recovery, both in summer and winter
- winter air recirculation, with possible heating
- summer air recirculation, with cooling, dehumidification or cooling and dehumidification
- air recirculation with exchange air, together with all treatments provided for recirculation

The air flow rates may feature the values below:

- air introduced in room, flow rate setting 300 m<sup>3</sup>/h 500 m<sup>3</sup>/h
- air exchange, flow rate setting 160 300 m<sup>3</sup>/h
- free-cooling, exchange flow rate setting 160 300  $\mbox{m}^{3}/\mbox{h}$

## Refrigerating circuit operation

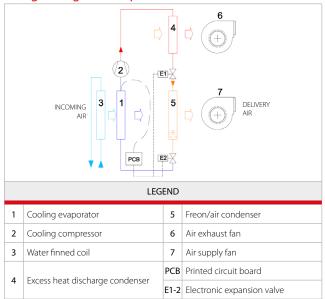



Figure 2 - Thermal hygrometric operation

#### Cooling

The finned coil (3), connected to the radiant hydraulic system, provides summer cooling or winter heating.

The output temperature control is performed by the unit itself through the mixing valve installed in the water circuit.

#### Dehumidification and cooling

The finned coil (3) supplied by the radiant system water pre-cools air, while the cooling evaporator (1) carries out subsequent cooling and consequent debumidification of the air

The refrigerating circuit includes two parallel-connected condensers: in addition to the air-cooling condenser (5), a second condenser cooled by the ejected air flow (6) disposes of the condensation heat in the external environment. When performing this operation, the unit exploits both the ejected foul air and an additional integration flow of external air.

The two electronic expansion valves (E) enable to distribute the condensation heat in the desired ratio between introduced air and ejected air; in this way, one can obtain the desired temperature for the ejected air between maximum cold and neutral.

The setting values for the ejected air temperature are:

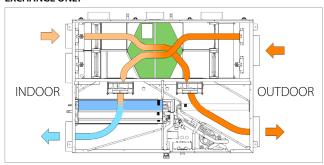
- summer neutral temperature
- summer integration temperature
- winter neutral temperature
- winter integration temperature



#### Note:

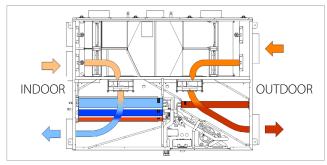
The cooling circuit cannot be turned on in winter nor in the exchange-only function.

**0942EN** May 2022


VENTILATION, DEHUMIDIFICATION, SENSITIVE POWER INTEGRATION UNITS FOR RADIANT SYSTEMS KDV

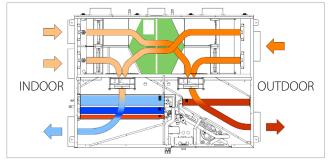





## Summer operation

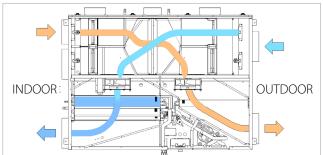
## **EXCHANGE ONLY**




Both fans are ON and provide air exchange: the external air is cooled first by the recuperator through the ejected air, and then by the refrigerated water of the finned coil.

## **DEHUMIDIFICATION ONLY**

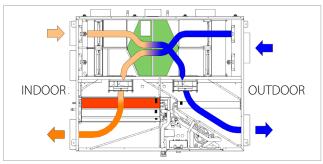



The compressor and delivery fan are ON; the room air is dehumidified and transferred at the temperature setting. Should it be necessary to dispose of the heat in excess, the ejection fan intakes and ejects an external air flow, heated by the disposal coil.

# EXCHANGE + DEHUMIDIFICATION / EXCHANGE + COOLING

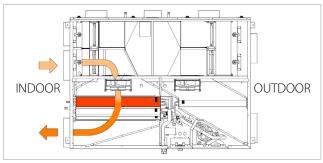


The compressor and both fans are ON. The introduced air is treated by the entire coil pack. The introduced air flow rate can be set between 300 - 500 m $^3$ /h, while the exchange air can be set between 160 - 300 m $^3$ /h.


# **HEAT RECUPERATOR BY-PASS**



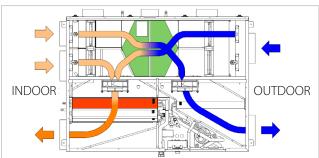
Both fans are ON, the damper of the introduced external air is closed while the bypass damper is open. The introduced air is treated by the refrigerated-water coil. The air flow rate can be set between 160 - 300 m<sup>3</sup>/h.


## Winter operation

## **EXCHANGE ONLY**

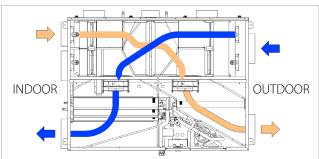


Both fans are ON and provide exchange; the external air is heated first by the recuperator through the ejected air, and then by the hot water circulating inside the finned coil.


## RECIRCULATION ONLY



The delivery fan is ON; the room air is sucked and reintroduced at the temperature setting. The ejected air temperature can be set by modulating the hot water flow rate in the finned coil.


The flow rate of the introduced air can be set between  $300 - 500 \text{ m}^3/\text{h}$ 

# **EXCHANGE + RECIRCULATION**



The fans are both ON. The introduced air is heated by the water-powered coil. The exchange air is pre-heated through the recuperator by the ejected air. The introduced air flow rate can be set between 300 - 500 m³/h, while the exchange air can be set between 160 - 300 m³/h.

# FREE-COOLING INVERNALE

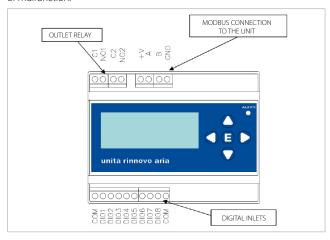


The fans are both ON, the damper of the introduced external air is closed while the by-pass damper is open. The water circuit of the finned coil is closed. The air flow rate can be set between  $160 - 300 \, \text{m}^3 / \text{h}$ .

**0942EN** May 2022

VENTILATION, DEHUMIDIFICATION, SENSITIVE POWER INTEGRATION UNITS FOR RADIANT SYSTEMS

KDV




## Control panel

The machine features a remote control panel for installation on DIN template (space occupied by 6 modules) in a wall-mounting electric panel.

The control panel has 3 terminal strips for:

- connection to the unit through four cables that provide electric power to the panel (24  $\rm V$ ) and serial communication with the electronic card
- digital input signal for the various functions to be activated
- two digital relay outlets to activate a circulation pump and an alarm in case of mulfunction.



#### **MODBUS** connection

Connection with 4 cables, 2 for 24Vdc power to panel and 2 for serial communication.

Use a screened cable with a 0.5 mm<sup>2</sup> for connection.

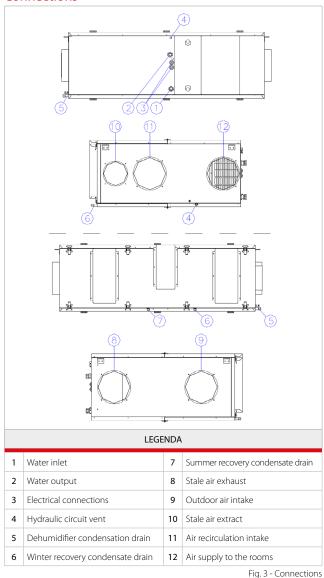
#### **Outlet relays**

- C01-NO1: 250V AC 5A relay which activates when water circulation is required, useful to control a pump
- C01-NO2: 250V AC 5A relay activated by alarm, useful to provide a remote alarm signal

#### **Digital inlets**

- COM: terminal shared by all inlets
- Dl01: season signal, 1 = summer, 0 = winter, if season is set from a digital inlet instead of keypad
- DI02: input signal for room fan activation, this is not an operation mode but enables to keep the room air moving
- DI03: exchange input signal
- DI04: dehumidification input signal
- DI05: cooling input signal in SUMMER or heating input signal in WINTER
- DI06: exchange blocking, enables to block an exchange set with DI03 or with time schedules. This inlet, combined to DI03 and connected to a 3-position selector type 0-1-2, enables operation with three options: exchange ON, exchange OFF, AUTOMATIC exchange with time schedules
- DI07: free-cooling consent (if the external temperature falls within the set range);
- DI08: input signal for flow rate attenuation; this contact enables to reduce the air flow rates without changing the functions active in a specific moment, based on the technical settings. This control is useful when the user wants to turn the unit ON privileging aerial noise reduction versus air conditioning performance, for example during the night

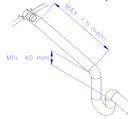
#### Funzioni disponibili per il trattamento dell'aria


- **Exchange:** air exchange with flow rate provided for exchange, using heat recuperator
- **Cooling:** it appears when the selected season is summer; the refrigerating compressor is turned ON for dehumidification and the delivery temperature will be the setting value for cooling integration. Cooling can also be performed with refrigerated water only and compressor OFF
- **Heating:** it appears in place of cooling when the selected season is winter; the delivery temperature will be the value for operation with heating integration, achieved through the water-powered coil. The ejected air temperature is controlled by a valve modulating the water flow inside the coil
- **Dehumidification:** the refrigerating compressor is turned ON for dehumidification and the delivery temperature will be the value for operation with neutral air
- Free-cooling: it activates air exchange with the flow rate provided for free-cooling, without using the heat recuperator. In addition to the digital input signal, free-cooling requires an external temperature within the technical setting limits
- **Attenuation:** the unit works with the flow rates set for attenuation, which are set by default at lower values compared to normal operation to limit aeraulic noise. This function is useful when the user wants the machine to work during the night

VENTILATION, DEHUMIDIFICATION, SENSITIVE POWER INTEGRATION UNITS FOR RADIANT SYSTEMS KDV






## Connections



# Connection of water circuit pipes

Shut-off valves must be installed in the refrigerated water pipes to divide the unit system in sections. After connection to the system, check the water seal of both the connections and unit to prevent damages to the room below.

#### **Condensation drain siphons**



There are two condensation drains, one for summer condensation and one for winter. They must ensure a 15 l/h flow rate and feature a 3% min gradient. Siphons are essential to prevent the air suction from affecting proper drainage of the condensation that may form; they must be independent, with a 40 mm min height difference and

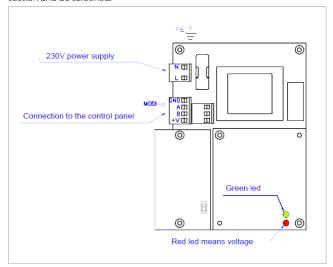
installed near the unit drain ducts. Do not directly connect the condensate drains directly into the sewer system because in periods when the machine is not used there could be spread of bad smells.

#### **Aeraulic connections**

The unit includes plastic nozzles with gaskets, extending for about 4 cm, for installation of flexible or rigid ducts, as long as equipped with gaskets to prevent air leaks and consequent undesired noise.

The nozzle diameters are: delivery and recirculation:  $\emptyset$  200; exchange and ejection:  $\emptyset$  200; WC/kitchen foul air intake:  $\emptyset$  160

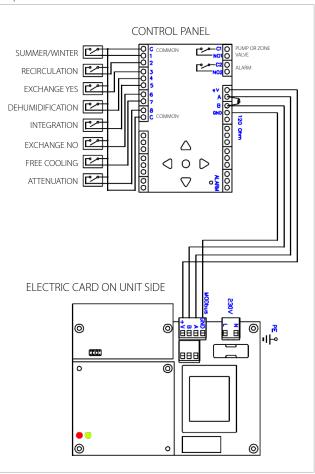
The actual diameter of the connections is about 1 mm smaller than the nominal diameter


## **Electric connections**

#### **Conductor section**

The electric power line and the sectioning devices must be determined by operators qualified for electric network planning; the cable must however feature a 3x1.5 mm<sup>2</sup> min section, F + N+ PE.

The figure below shows the terminals available for the connections:


- electric power must be supplied on the unit edge
- -4-cable connection to control panel; it provides both the panel 24Vdc power and serial communication. This connection cable must have a 0.5 mm<sup>2</sup> min section and be screened.



#### Connection to control panel

If the serial communication line between the control panel and the KDVRAY500 unit is longer than 25 m, a 120 Ohm, ¼ W, terminal resistance must be installed between the control panel A and B terminals.

The resistance is fixed with tape on the back of the control panel, in the DIN template notch.



VENTILATION, DEHUMIDIFICATION, SENSITIVE POWER INTEGRATION UNITS FOR RADIANT SYSTEMS KDV





## **Dimensions**

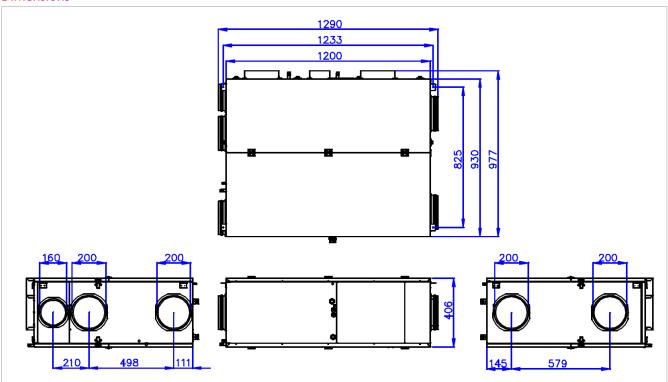



Fig. 4 - Dimensions in mm

# **Product specifications**

# KDVRAY500

Duct-type monoblock air treatment unit for ventilation, dehumidification and sensitive power integration for ceiling installation; to be combined with cooling radiant systems, complete of high-efficiency counterflow heat recuperator, removable filtering section in synthetic material class G3 (EN779:2002), 2 "brushless" centrifugal fans with motor coupled directly, n. 5 motorized dampers, refrigerating circuit with R134a refrigerating gas, hydraulic circuit, treatment coils with copper pipe and aluminum fins, 5 delivery outputs, recirculation, external outlet,  $\emptyset$ 200 mm ejection and  $\emptyset$  160 mm extraction. Total flow rate 160÷500 m³/h. External air flow rate 160÷300 m³/h. Dehumidification capacity 31,2 l/24h (referred to internal rooms). Water connections 2x1/2"F. Power 230 V.